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Abstract

In this paper we present and compare three different multi-grid numerica schemes over
ungtructured triangular mesh that solve the dider ar bearing problem of hard disk drives. For
each fixed dider attitude the ar bearing pressure is obtained by solving the generdized Reynolds
equation usng one of the three schemes. In the fird scheme the convection pat of the
genadized Reynolds equation is modded by the “flux difference splitting” technique.  Higher
order accuracy in space is achieved by a linear recongruction technique with flux limiters
incorporated to prevent oscillation in the high-pressure gradient regions. In the second scheme
the convection pat is modded by the multi-dimensond upwind resdue distribution approach.
In the third scheme the SUPG finite dement approach, cast in resdue digtribution form, is used
to modd the convection part. In dl three schemes, a Gaerkin method is used to discretize the
diffuson terms. In addition, a norntnested multi-grid iteration technique is used to speed up the

convergence rate.  Findly, the steady date flying attitude of the dider subject to pre-applied



suspension force and torques is obtained by a Quasi-Newton iteration method, and the results of

the current three schemes and the other two schemes are compared.

INTRODUCTION

Although there are severd dternative ways to dore digitd information, the hard disk drive
provides the cheapest and most efficient way to store and retrieve daia  In today’s hard disk
drive (Fig. 1), the read-write dement is atached to the tralling edge of an ar bearing dider,
which glides over the rotating disk with a separation (flying height) determined by the baance
between the ar bearing force generated by the thin squeezed air layer under the dider and the
opposing force exerted by a pre-load of the suspensgon which links the dider and the actuator
(Fig. 2). To increase the storage density and reduce the sgna noise, it is desrable to achieve a
low and uniform deady date flying height across the disk. The desgn god of the next
generation hard disk drive is to reach an ared density of 100 Ghit/in®, which requires a flying
height between 5 and 10 nm. In the hard disk drive indudtry the above flying etitude god is
obtained by carefully designing the ral shape of the dider, which is generdly very complicated.
To reduce the design cost, accurate and efficient steady State ar bearing design software is
required.

In the dider's manufacturing process the etch technique leaves a steep narrow wal profile
region ( a few microns wide for diders with millimeter length scade) dong the ral boundaries.
The extenson and shagpe of the wal profiles have profound influence on the flying atitude. As a
result, it is important to capture these regions of rapidy changing devations in the numericd

modd. In addition, the ar bearing pressure fied is characterized by irregularly distributed



regions with very high-pressure gradient. To get accurate results fine enough grids are needed to
cover the above regions. Under these Stuations unstructured grids prove to be an economical
and convenient way of decomposing the computational domain.

In our previous papers [1] [2] [3], we presented triangular mesh generation and refinement
and adaptation techniques that suit the dider ar bearing problem based on the Deaunay method
[4] [5] and the longest-Side-bisection Ddaunay refinement technique [6]. An implicit non-nested
multi-grid finite volume scheme was dso condructed over this mesh. The numerical scheme
gives comparable results with much less amulation time to these of an older code developed in
the Computer Mechanics Laboratory [7], which has been widely accepted in the hard disk drive
industry. But the new numerica method has two potertial shortcomings.  Fird, the scheme is an
extenson of the numericd schemes ligted in [8] for convection and diffusion type equations on a
rectangular Cartesan mesh to the undructured triangular mesh. These schemes are quite
diffusve if the convection is strong, which is true in the dider ar bearing problem. Second, the
control volumes of the new scheme are the dud Voronoi Polygons of the Delaunay triangulation.
This requires the quality of the mesh to be extremey good, otherwise the Voronoi polygon can
be highly distorted.

To improve the above potentiad shortcomings, in this paper we present three different
numericad schemes that use the same meshes as our previous approach but take the median dud
of the triangular mesh as the control volume. The median dud is different from the dua Voronoi
polygons, it is obtaned by connecting the neighboring centroids of the triangles By the
adoption of a less diffusve soatid discretization, we aso hope to improve the accuracy of the
numerica schemes themsdves without sgnificantly increesng the smulation time.  In the new

goproaches, we use the “flux difference plitting” (FDS) technique in [9], the postive



dreamwise invariant (PSl) resdue digribution gpproach in [10][11] and the Streamline upwind
Petrov-Gderkin (SUPG) finite dement scheme [12] cast as a resdue didribution formula [13] to
discretize the convection pat of the generdized Reynolds equation, while a sandard Gaerkin
type method [14] is used to mode the diffuson part of the equation. A non-nested multi-grid
technigue based on the full dorage agpproximation multi-grid drategy of Brandt [15] is
implemented to improve the convergence rate of the Gauss-Seide smoother used to solve the
nortlinear discretized equation. Mavriplis and Jameson's redriction and interpolation functions
[16][17] that suit non-nested triangular meshes are used to trandfer the variables and residues
between the meshes.

Findly, the seady dae flying heght of the dider is found by a Quas-Newton iteration

method fully described in Dennis and Schnabel [18].

GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

In ar bearing smulation the generdlized Reynolds equation is solved to get the pressure
fidd. Because of the extremey narrow spacing between the dider and the disk (on the order of
10 nm, which is only a fraction of the mean free path of the gas molecules), the gas in the
goacing is extremdy rarefied and the gas molecules near the solid surfaces no longer smply
adhere to them, but insead there is dipping. The usud continuity and non-dip condition
assumptions are no longer an acceptable gpproach to the actua physics. Until now, the modified
vearsons of the Reynolds equation that take the rarefaction and dipping effect into account give
the most agreedble results with those of experiments and direct Montecarlo smulation [19-23].

The modification makes the equation appear more complicated, but from the numerica point of



view, it dso gives the equation a better numerica qudity than that of the traditiond Reynolds
equation, snce the pressure fidds given by the modified versons have less seep pressure
profiles than those predicted by the traditiond equation. The different verdons of the Reynolds
equation can be written in a unified dimengonless from as
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where s =12nwz?/p s * is the squeeze number, which is a condant representing the relative
importance between the ungeady effect and the diffuson effect, where m is the dynamic
viscosty of the gas, w is the angular velocity of the disk, L is the length scae of the dider (taken
to be the length of the dider), p, is the ambient pressure, 7 is the flying height of a reference
point on he dider ( usudly taken to be the point a the trailling edge center of the dider with zero
recess). 7 =w is the dimensionless time, x =/, is the dimensionless x coordinate, y =,/ is the
dimensonless y coordinate, p=p/p is the dimensonless pressure, g =5/n, is the dimensonless
normal distance from the disk to the dider, L =enti/p,n,* adL =eniL/pn* aethe bearing

numbers in the x and y directions, respectively, which represent the relaive importance between
the convection effect and the diffusion effect. U and V' are the disk velocity components in the
x and y direction. Q is the flow factor, which marks the difference between different rarefaction
and dip models of the equation. Different Q for different modds are briefly lised bedow. The
details can be found in Burgdorfer [19], Hda and Domoto [20] and Fukui and Kaneko [21].

0 =1, ocontinuum mode.

- 1+6aK%H, first order dip mode.



0=1+ GK%H + 6@;,1(%1{%2, second order dip modd.

_ .k / o Fukui-Kaneko moddl.

2-2 3 s the accomodation factor, K, = |_is the Knudsen number, and

In these expressions , =
a h,

| is the mean free molecular path. In our smulaion the Fukui-Kaneko modd is used, which is
believed to give the best results among different models. In the implementation of the modd,
the database in [21] is used to find the flow factor.

Along the outdde boundary of the dider, the pressure is amply taken as the ambient

jpressure.

MESH GENERATION

Because of its geomeric flexibility in condructing a qudity mesh aound complex
configurations and the relative convenience of incorporating an adaptive methodology, and aso
its efficiency and its ability to generate optima connections to exising node points, the so cdled
Ddaunay method as described in [4] is used as a huilding block in our approach for the
folowing incrementd mesh refinement and adgptation. Usng different refinement  techniques,
we generate three sets of good quality unstructured triangular meshes. For the coarsest mesh, it's
important that the boundaries of the rals be represented in the triangulation. The conforming
Deaunay refinement technique in Ruppert [5] is used to generate the coarsest conformed
background mesh. The longest-dde bisection Ddaunay refinement technique in Rivara and

Inostroza [6] is adopted to cluster fine meshes in the recess wal regions with rgpid geometric



change based on geometric condderations (the maximum recess depth difference in each triangle
must be smaler than a prescribed vaue), which forms the second finer mesh.  For the mesh
adaptation, the maximum undivided pressure difference in a triangle is used to decide whether
the triangle needs further refinement. The same longest-Sde bisection Deaunay refinement

technique is used to refine the mesh. Details can be found in our previous papers[1][2].

THE FDS UPWIND DISCRETIZATION OF THE COVECTION EQUATION

Ignore the diffuson terms in equation (1) for the moment and divide dl terms of the equation
by S. After integrating the convection equetion over the median dua W (with an area 4)

around each vertex, we can rewrite the equation as

q éL L U
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In discretized form this can be writen as

ﬁ[(PH){”l i (pH)j]+ A F, DI, =0, (3

where DI, is the distance between the two centroids ¢ and ( Jj +1)(I (Fig. 3). Fjis the

numerical flux across DI, given by Roe's flux difference splitting technique [9] &s

, =§[F((PH)L)+F((PH)R)- Fi((err), - (prr),)]. 4



(PH), and (PH), aretheleft and right tate values of PH  to the middle of thelineij. |I'|isthe
average wave speed defined as
2s|=|(L, )+ (L,) | (5)

(L ) and (L n), are the projections of the bearing number vector (LX,L ) evaluated at the

vertices | and j, respectively, onto the outward normal vector 7, of the boundary line connecting

jtand ( j+ 1)0. The bearing number vector is a continous known function of space only under a

fixed flying dtitude. Due to the smdl sze of the dider compared with the radius, the bearing

number vector changes dowly acrossthe dider. F isthe flux function defined as

sF(Pr)=(L..L,)u,(PH). 6)
Tempordly, it can be linearized as
n+l n T[F n+l 71
F\PH = F\PH ——\WPH) -\PH) |.
(pry ™= e} + T (o)) o

It can be easly shown that the projection of the bearing vector dong esch line on the disk is a

congant, which means the x and y components of the bearing number vector, L and

L , commute with the derivative operator. Asaresult

l):(l-x’l-y)x’lr:/:Ln- )
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The find upwind scheme can be written as
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where
2s1°=(L,) +|(L,)]. (10)
and
2s1”=(L,),- (L), (11)

If (PH)L and (PH)R are evaluated at vertices i and j, then the space discretization has only first
order accuracy. Here the linear recondruction technique in [24] is adopted to achieve a higher
order space accuracy. Theleft and right State variables can be evaluated as

i

(pa), = (pH), +F R(PH),>Or, , (12)

(Pr), =(PH),- F N(PH) O, , (13)

J ij

where N(PH) is the average gradient of PH a vertex i or j, which can be evauaed by use of a

smple Green's theorem or least square approach [25]. In our caculation, the Green's theorem

—1

1
method is used. Dr, :EQ" - r,) is the vector pointing from i to j with half its length. To avoid

the gppearance of new locad maximum or minimum after the recondruction procedure, the
vaiadle F ranging from O to 1 is used to limit the recondructed left and right hand Hae

variables, which is determined by using the same method asin [24].
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THE RESIDUE DISTRIBUTION DISCRETIZATION OF THE COVECTION
EQUATION

In the resdue digtribution schemesin [10][11], the resdud intriangle T is defined as

L & _
fl=- @‘)TMdAZ @Téﬂx = Oq(pr)aa = 4,1 7 xN(PH)
T es s g ’ (14)
= & 1 (P),

where sl ; = ‘L L, ) is the averaged wave speed in each triangle.  The conservation congraint

gives

I_T zATiSd‘)r(Lx’Ly)dA zé[(Lx'Ly)l-'-(Lx’Ly)z +(LX’L}’)3]' (15)

In the above formulation, the bearing number is assumed to vary linearly in each triangle.  The

inflow parameter k| isdefined as

2k" =1 xn, (16)

where Z is the inward norma of each edge of the triangle with a magnitude equd to its length

(see Fg. 4). In the ar bearing problem ij only needs to be calcuated once and stored for later
use.

Theresdua of each triangle is sent to its three nodes by the distribution coefficient bf

fi=b'f". 17)
The convection equation can be discretized as
A n+ n 3 7+
—W[(PH),. " (pw), ]: _af/=apt =abp &k (p)” (18)
DT T=1 T=1 T=1 = j=1 °
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In the above formulation the solution is updated by accumulating the resdues a node i triangle
by triangle To put dl the schemes in a unified form, it can be re-formulated such that the

solution can be updated edge by edge

AW[ PH)]abak( )1

T=1 j=1

= g[(b”k e P+ (0% + b7 )P,

(19)

~.

where T'1 and 72 are the two neigboring triangles sharing the edge ij.

For the PSl scheme [10][11], the distribution coefficient can be written as

b’ = MinMo dg max(o ki ) (O’((PH)t ' (PH)m)f T)l\;'

7 il

where (PH ), is the linearly interpolated PH value at the inflow point, which can be evaluated

(20)

as

a min (O k. )(PH)_/.

_Jj=

(PH), = (21)

a3mn(0k )

j=1

For the SUPG finite dement scheme [12] in reddue didribution form [13], the ditribution

coefficient can bewritten as

b’ =Z+05——Fk . (22)

Thelength scae /2 can be approximated as

= ma G(ni ). ) (23)




THE FINITE ELEMENT DISCRETIZATION OF THE DIFFUSION TERM

The diffuson term can be discretized with a Galerkin weighted integra [14]
é~ & 31-[P 3ﬂpd:| %4 n+l n+l
W) PH™ — ,QPH™ —=ydAd=a W (\P) - \P) |. 24
a, N XDPH® . OPH? o34 = & ey - )] (24)

Here 4,, isthe median dud, and the weights 17, are defined as

2sW, = QPH oot an(aLj) +OPH® cot an(aRj ) (25)

where QPHSL and QPH3R are the average vaues of OPH’in the triangle to the Ieft or right of

theedgeij. a,, and @, arethe opposite anglesto the edge ij as shown in Fig.3.

ITERATIVE SOLVER OF THE DISCRETIZED EQUATIONS

All the above numericd schemes can be written in aunified form as

M
" ta Gk t=s(n b ) (26)
For the FDS scheme
Sy Kty Uy @7)
=gt Ao+

C,=| DI,H, - W, (29)

s(pr )= s S itor Yeu) + 51 o (Pr):
A (29)

24 el(em) )+ #l(er),)- ), - o), o,

Jj=1

For schemes in resdue distribution form
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A M M
C=2wp i (b %+ 07K )+ AW, (30)
i DT i = i i i i i =1 ij
T1, T1 T2,T2
Cij:-(bi k" + b, "k, )Hj-W,-j, (31)
——_ A n
s{e.p)= 2 (e, (32)

Equation (26) is dtill nonlinear, because C, and C, depend on P. One smple way to linearize

the equation is to take P as the most recent known value of the lagt iteration, this is the so-caled
lagging technique. The resulting Smultaneous equations are solved by a two sweep point Gauss
Seidd method. The first sweep sarts from e beginning of the vertex list, and the second sweep
dats from the end of the ligt. This takes into account the fact that the diffison terms in the
Reynolds eguation are dliptic in naure, and disurbance information is soread Smultaneoudy in
al directions.

The seady Sate solution for one fixed attitude is found by marching in time. For Steedy Sate
problems with fixed atitude, the unsteady term is not needed physcdly, but it is kept here to
sarve as an under-rdaxation term. When a rddively large time step is used, the unsteady term
can be ignored, and the technique is more like a direct iteration than time marching. The implicit
schemes are unconditionaly stable, so an arbitrarily large CFL number such as 1.0E12 can be
used. At the beginning of each time step the coefficents are updated once and stored using the
solution of the previous time step, and the resulting linear dgebraic equations are solved by a
fixed number of two sweep GaussianSeide iterations. In our code, about ten to wenty Gauss-
Sadd iterations are used to find an gpproximate solution. The choice of the number of iteration

corresponds to optimized overall convergence speed for some diders.
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The boundary condition is very dmple dong the outsde boundaries of the dider, the

pressure is ambient.

GRID TRANSFER OPERATORS FOR THE MULTI-GRID ALGORITHM

In the implementation of the multi-grid agorithm the variables and resdues are transferred
frequently between different mesh levdls  The transfer procedure has vitd influence on the
overdl peformance of the multi-grid agorithm. Mavripilis and Jameson's [16][17] grid transfer
operators have been shown to be wel suited for multi-grid adgorithms over unstructured
triangular meshes. Here we smply adopt their operators.

Let I;,, be the operator used to transfer variables or residues from the fine mesh k+1 to the

k

coarse mesh Kk, it is aso caled the redriction or projection operator. If 7,,, iS operaing on
variables, the operation can smply be taken as a linear interpolation of the variables from the
fine mesh nodes to the coarser mesh nodes. If it operates on the residue, then the residue at the
vertex of a finer mesh can be didtributed to the three vertices of the coaser tiangle that encloses
the vertex by its three area coordinates. This can guarantee the conservation of the residue in the
transfer process.

Let 7, be the operator used to transfer corrections from the coarse mesh k to the fine mesh

k+1, it is dso cdled the interpolation or prolongation operator. It can smply be taken as a linear

interpolation.



FAS MULTI-GRID ALGORITHM

The full approximation gorage (FAS) dgorithm in Brandt [15] is wdl suited for nonlinear
equations. It solves the equations by iterating over severd sets of mesh. In abdtract form it can
be presented as follows. To smplify the expresson we assume only two levels of mesh are used

(k+1 represents the fine mesh and k represents the coarse mesh). Let L be the differentid
operator, U be the unknown vector and F be the source term, then the differentid equation can

be written as

LU=F. (33)

On the fine mesh, the equation can be discretized as

L,U=F,.,. (34)

A certain number of iterations can be carried out until the convergence rate becomes dower, then

k+1 k+1

the solution "~ and the resdue F,,,- L,,,u = ae trandferred to the coarse mesh, and the

following equation

LU=I'(Fo - L™ + L (15,0™) (35)
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+1 k

is solved there with an initid guess [ ,’jﬂgk A gpproximate solution u" is found after enough
iterations. Finaly the correction on mesh k is trandferred back to k+1, and the solution on mesh

k+1, u*™ isupdated as
u el L - 1), (36)

which serves as the initid guess of the next multi-grid circle iteration. The above process
continues until the error drops to an acceptible leve.

For our case, the differential operator on level k+1can be written as

1 1

(L P),- :C,-P,-n+ il %Cﬁpjﬂ : (37)
J=

1
Similar expressons hold for the other levels. The source term on the fine mesh k+1 is

(Fo), =s(7. P (39)
On the coase leve k; it can be written as

F, = [ (Fn - Lo ™)+ L (1) (39)
In our actud implementation three levels of mesh are used. Fgure 5 shows the multi-grid V
cydes used in the samulation. To get a good initid guess we firs do forty iterations on the

coasest mesh, then we linearly interpolate the solution variables to the second leve mesh.
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Twenty iterations are carried out there before we transfer the solution varigbles to the third leve
mesh. After tha, N V cycles are caried out before we adaptively refine the third level mesh
according to the pressure digribution. The following V cycles are peformed over the new finest
mesh and the other two meshes until convergence is achieved. The number of iterations on each

mesh level corresponds to optimized convergence speed for some diders.

INVERSE PROBLEM

In ar bearing amulation the seady dSate flying attitude corresponding to a fixed prescribed
load is more important than the pressure didribution of the Steady date solution of one fixed
attitude, because it is the former that is prescribed in the design of hard disk drives. The steady
date flying atitude is defined as the one a which the pre-enforced suspension force and pitch

and roll torques are balanced by their counterparts generated by the air bearing forces and

moments that are functions of flying attitude. We can defineavector R =(R,,R,,R,), where

R =F, - F, (40)

(41)

R3 = (Mair)r +(A/;:), . (Mshear)r _ Yo’

air

(42)

where F, is the ar bearing force of a certain fixed dtitude, F, is the applied suspension force,

M,, M, and M are moments caused by ar bearing pressure at a fixed attitude, the gpplied

shear
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suspension force and viscous shear force, respectively.  Subscripts p and r represent the
projection in the pitch and roll directions (see Fig. 2). X, and Y, are coordinates of the position
where the suspenson force is gpplied. R is a nontlinear function of the flying height, the pitch
angle and the roll angle. The object is to find a particular flying attitude that makes R zero,
which corresponds to the Steady date flying attitude. The Quas-Newton iteration method for
non-linear problems fully described in Dennis and Schnabe [18] is implemented to find the

dseady date attitude. Our experience shows that generaly only a few Newton steps are needed to

find the steady state solution depending on the initidly assumed vaues.

RESULTS AND DISCUSSION

Figures 6 and 7 depict the dider used in the IBM Travelstar 25 Ghit hard disk drive. The
length and width in the figures have been normdized by the dimensond length (Imm). Figures
8, 9 and 10 show one st of three initid meshes for the IBM dider. Figure 11 shows one
adaptively refined third level mesh. Figure 12 shows the comparison of the convergence history
of the iterations on a sngle st of mesh and the multi-grid iteration. The ‘S a the legend end
represents the iteration on a sngle set of mesh, while the ‘M’ represents multi-grid iteration. The
convergence difference among different schemes is very smdl, and it is dmogt undetectable for
the sngle mesh iteration from the figure. Pat2 is the Patankar scheme extended to triangular
mesh [3]. The sudden error jump in the figure corresponds to mesh adaptation.  From the figure
it can be seen tha for the sngle mesh iteration, the error initidly drops very fast, only ten
iterations are needed to bring the error down from about 10 to 10*. But after the high frequency

error has been smoothed out, the curve flattens. It takes about another 140 iterations to further
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reduce the error by about two orders of magnitude. The multi-grid curve shows that al error
components can be continudy and efficently romoved. The log error drops dmost linearly with
the number of iterations (time steps). The figure dso shows the multi-grid technique works well
for dl the schemes on the triangular mesh.  For this particular dider only 20 multi-grid cycles are
needed to get the converged solution. More than one order of magnitude smulation time is
saved by use of the multi-grid technique.

Figures 13, 14, 15, 16 and 17 show the pressure contours at the steedy state attitude obtained
by the rectangular mesh solver [7] and the four triangular mesh solvers, respectively. The disk is
rotating at 4500 RPM, and the dider is located a a 15 mm radid podtion with zero skew angle.
The prescribed suspension force is 1.5 g a the center of the dider, the prescribed suspension
torque is zero. The pressure contours differ only by very smadl details. From the above figures
we can see that dl the regions with large geometric changes or pressure gradients have been
efficiently captured by the mesh generation and adaptation techniques.

Figure 18 shows the flying height grid convergence comparison between the triangular mesh
solvers and the rectangular mesh solver.  The difference among the grid converged flying height
solution of dl the schemes is less than 1 nm.  All schemes show a trend to converge to a 16 nm
flying height. The PS and SUPG sthemes are less diffusve than the other schemes, which
predict a dightly higher flying height. Fgures 19 and 20 show the pitch angle and roll angle grid
convergence higtories respectivdly.  For the node number corresponding to flying height
convergence, al codes reach grid convergence. Figure 21 shows a plot of the smulaion time for
finding the Seady date attitude as a function of the grid sze. For the same number of node
points, the triangular mesh solvers cost more time than the rectangular solver. But this is not

adways true. The rall shape of the IBM dider is extremdy regular. In this case, the rectangular
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mesh solver is expected to do a good job. But the triangular mesh solvers will have more
advantage than the rectangular mesh solver when the geometry becomes more complicated.

To demondrate this, the NSIC dider (Fig. 22 and 23 with a characteristic length scae of 1
mm) is smulated. Figures 24, 25, 26 and 27 show one set of meshes used in the multi-grid
iteration. Figure 28 shows the flying height grid convergence history. The disk is rotating a
7200 RPM, and the dider is located a a 15 mm radid postion with a -1.22 nRad kew angle.

The prescribed suspension force is 1.5 g at the center of the dider, the prescribed suspension
torque is zero. Figure 28 shows the grid convergence higtory, again the multi-grid technique
oregtly improved the convergence. Only 7 multi-grid cycles are needed to achieve convergence.
Figures 29, 30, 31, 32 and 33 show the pressure contours corresponding to steedy dtate flying
height for the different schemes. Figure 34 shows the flying height grid convergence comparison
between the triangular mesh solvers and the rectangular mesh solver. The PSI and SUPG predict
a grid converged flying height around 8 nm, while the other schemes predict a flying height
aound 7 nm, but dl of them 4ill have a trend to fly higher with more grid points added. This
clearly shows that the PSI and the SUPG scheme introduce less numerica diffusive effects than
the other schemes and are assumed to be more accurate. Figure 35 and 36 are the grid
convergence higtory for the pitch and roll angles respectively. Figure 37 shows the smulation
time used to find the deady date flying dtitude as a function of node number. This time, a the
beginning, when the node number is the same, the triangular mesh solver uses dmost the same or
less time as the rectangular mesh solver.  When the grid size increases, the times needed by the
PS and the SUPG schemes increase faster than by the rectangular mesh solver. But this is due
to the nature of the non-nested multi-grid technique we used. The current technique does not

require any reationship between the different mesh levels however the rdationship has
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influence on the peformance of the multi-grid iteration. The mesh reaionship is decided by
severd control parameters in our grid generation process [2]. These parameters are optimized to
the grid dze in the beginning range. When a grid sze is far out of that range, a new st of
parameters is needed to give optimized peformance. Neverthdess from the above grid
convergence figures, we can see that, the PSl and the SUPG schemes achieve grid convergence
within that range for diders as complicated asthe IBM and the NSIC diders.

Figure 38 shows the steady date flying heights of the NSIC dider at three radid postions
obtained by the five numericd schemes and the prdiminary experiments of NSIC.  The results
predicted by al numericad schemes are quite close to the experimenta data.  For this particular
dider, al other schemes except the PSI and SUPG schemes have a tendency of under-predicting
the flying height. We bdlieve this is due to the more diffusve naure of these schemes compared

with the PSI and SUPG schemes.

SUMMARY AND CONCLUSIONS

Three different schemes are used to discretize the convection pat of the generdized
Reynolds equation on undructured triangular mesh, and a Gaderkin finite dement gpproach is
used to modd the diffuson pat of the equation. The resulting numerica schemes are shown to
be unconditiondly dgable A nonnested FAS multi-grid adgorithm has been  successfully
employed to speed up the convergence rate of the above schemes. The multi-grid dgorithm
requires no relationship between different mesh levels. On the average, nearly one order of
gmulatiion time is saved by implementing the multi-grid agorithm. In addition the Steady date

flying attitude is found by a Quas-Newton method. Even though the ungtructured nature of the



grid makes the dtuation much more complicated than it is for the structured rectangular mesh,
and dl the information can be stored and retrieved only through a complicated data structure, the
efficency of the current code competes favorably with the rectangular mesh counterpart with
gmilar grid 9ze. To get comparable results the PSI and the SUPG triangular mesh solvers are
generdly four to five times faster depending on the complexity of the rall shgpe, due to the much
improved grid point podtion srategy and the increased accuracy of the scheme.  Among the
schemes, the PSI and the SUPG schemes are the most accurate and achieve grid convergence at

the smdlest node number.

ACKNOWLEDGEMENT
This work was supported by the Computer Mechanics Laboratory a Universty of Cdifornia

a Berkeley.



23

REFERENCES

1. L.WuandD. B. Bogy, IEEE Trans. on Magnetics, 35, 2421 (1999).

2. L.Wuand D. B. Bogy, submitted to ASME J. Tribology (1999 a).

3. L.WuandD. B. Bogy, submitted to ASME J. Tribology (1999 b).

4. S.W. Soan, Advances in Engng Software, 9, 34 (1987).

5. J. Ruppert, J. of Algorithms, 18, 548 (1995).

6. M. Rivaraand P. Inostroza, Int. J. Numer. Methods. Eng., 40, 581 (1997).

7. S. Lu, Doctord Dissartaion, Depatment of Mechanicd Engineering, Universty of
Cdifornia, Berkeey (1997).

8. S.V.Patankar, Numerical Heat Transfer and Fluid Flow (McGraw-Hill, New Y ork, 1980).

9. P.L.Roe, J. Comput. Phys, 43, 357 (1981).

10. R. Struijs, H. Deconinck and P. L. Roe, Proc. VKI Lecture Series on Computational Fluid
Dynamics, VKI LS 1991-01 (1991).

11. H. Paillere, H. Deconinck and A. Bortfiglioli, Proc. 2" Eur. CFD Conf., Stuttgart (1994).

12. T. J. R. Hughes and A. N. Brooks, Finite Element Methods for Convection Dominated Flows,
34, ASME, New York (1979).

13. H. Deconinck, R. Struijs, G. Bourgois and P. L. Roe, Proc. VKI Lecture Series on
Computational Fluid Dynamics, VKI LS 1993-04 (1993).

14. T. J. Barth, AIAA paper 91-0721 (1991).

15. A. Brandt, Math. Comp. , 31,333 (1977).

16. D. Mavriplisand A. Jameson, AIAA paper 87-0353 (1987).

17. D. J Mavriplis, AI44 J., 26, 824 (1988).

18. J. E. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and

Nonlinear Equations (Prentice-Hall, Englewood Cliffs, New Jersey, 1983).



24

19. A. Burgdorfer, ASME J. of Basic Engineering, 81, 94 (1959).

20.Y.T.Hsaand G. A. Domoto, ASME J. of Lubrication Technology, 105, 120 (1983).
21. S. Fukui and R. Kaneko, ASME J. of Tribology, 110, 335 (1988).

22. F. J. Alexander, A. L. Garciaand B. J. Alder, Phys. Fluids, 6, 3854 (1994).

23. W. Huang, D. B. Bogy and A. L. Garcia, Phys. Fluids, 9, 1764 (1997).

24. T.J. Bath and D. C. Jespersen, AI4A paper 89-0366 (1991).

25. T. J. Barth, AIAA paper 93-0668 (1993).



FIG. 1. The IBM Travesar 25GB hard disk drive.
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FIG. 3. The median dud control volume.
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FIG. 4. Theinward normas of atriangle.

HY opdles

Fig. 5. The muti-grid V cycles.
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FIG. 6. A dider design closeto the one used in the IBM Travelstar hard disk drive.



FIG. 7. The 3-D gometry of the IBM Travelstar dider.

FIG. 8. Thefird levd conforming mesh with 659 nodes

FIG. 9. The second levd mesh with 4099 nodes.

FIG. 10. Thethird level mesh before mesh adaptation with 12636 nodes.
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Fig. 11. Thethird level mesh after mesh adaptation with 18140 nodes.
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FIG. 12. The convergence history comparison between the iteration on a single set of mesh and

that of the multi-grid iteration for different schemes for one fixed flying attitude .

FIG. 13. The pressure contour for the steady state flying height a the 15mm radid postion

caculated by the rectangular mesh Patankar scheme of [7] with a 385 by 385 mesh.
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FIG. 14. The pressure contour caculated by the Patankar scheme extended to atriangular mesh

[1-3] with 18140 nodes for the finest levdl mesh.

FIG. 15. The pressure contour calculated by the present FDS scheme with 18140 nodes for the

finegt levedl mesh.

FIG. 16. The pressure contour caculated by the present PSI scheme with 18138 nodes for the

fines levd mesh.
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FIG. 17. The pressure contour calculated by the present SUPG scheme with 18137 nodes for the

finest levd mesh.
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FIG. 18. The grid convergence hisory of nomind flying height for the different schemes.
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FIG.19. The grid convergence history of the pitch angle (nRad ) for difference schemes.
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FIG.20. The grid convergence history of the roll angle (nkad ) for difference schemes.
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FIG. 21. Thesmulation time on aPll 350 PC as afunction of node number.

FIG. 22. The next generation NSIC dider design.

FIG. 23. The 3-D geometry of the NSIC dider.
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FIG. 24. Thefirg level conforming mesh with 717 nodes
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FIG. 25. The second levedl mesh with 4245 nodes.
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FIG. 26. The third level mesh before mesh adaptation with 12612 nodes.
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Fig. 27. The third level mesh after mesh adaptation with 18112 nodes.
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FIG. 28. The convergence history comparison between the iteration on a sngle set of mesh and

that of the multi-grid iteration for different schemes.
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FIG. 29. The pressure contour for the steedy state flying height at the 15mm radid position,

caculated by the Patankar scheme with a 385 by 385 mesh.

FIG. 30. The pressure contour caculated by the Patankar scheme extended to a triangular mesh

with 18112 nodes for the finest level mesh.
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FIG. 31. The pressure contour calculated by the FDS scheme with 18111 nodes for the finest

levd mesh.
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FIG. 32. The pressure contour calculated by the PSI scheme with 18110 nodes for the finest

levd mesh.

gl
Wy

FIG. 33. The pressure contour calculated by the SUPG scheme with 18110 nodes for the finest

levd mesh.
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FIG. 34. The grid convergence history of nomina flying height for different schemes.
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FIG. 35. The grid convergence history of the pitch angle (nRad ) for difference schemes.
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FIG. 36. Thegrid convergence history of theroll angle (nRad ) for difference schemes.
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FIG. 37. Thedmulation time on aPll 350 PC as afunction of node number.
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FIG. 38. Theflying height at different radia position for the NSIC dider.



